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ABSTRACT  
 
This report fully details the techniques involved in the modelling of a nonlinear and bi-axial 
vibration energy harvesting device. The device utilises a wire-coil electromagnetic (EM) 
transducer within a nonlinear oscillator created with a permanent-magnet/ball-bearing 
arrangement. The mechanical oscillations of the ball-bearing in response to bi-axial vibrations in a 
host structure induce a voltage across the coil, and therefore energy to power an attached device - 
such as an in-situ structural health monitoring system on an aircraft platform. Modelling of the 
mechanical dynamics and the electromechanical transduction of the harvester is undertaken by: 
means of finite element analysis (FEA), the homotopy analysis method (HAM), a novel 
probability-of-existence approach to vibro-impact, and numeric EM calculations. The models 
produced demonstrate high accuracy in comparison to a laboratory prototype.  
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Modelling of a Bi-axial Vibration Energy Harvester   
 
 

Executive Summary  
 
 
Continuing developments in the Structural Health Monitoring (SHM) domain hold great 
promise for the application of in-situ devices on air platforms, enabling the Australian 
Defence Force (ADF) to move from the current expensive time-based maintenance 
approach, to a more cost-effective condition-based approach. DSTO is investigating 
vibration energy harvesting (VEH) which is a foundation technology for powering many in-
situ SHM applications (for example, autonomous SHM systems that are designed to be 
retro-fitted onto a vehicle to monitor structural and/or corrosion hotspots). While 
commercial VEH solutions are available, the environment specific to air platforms inhibit 
their use – that is, commercial devices are often heavy, respond to only uni-axial 
vibrations, do not operate well at high accelerations, and produce output power at a very 
narrow frequency bandwidth. Recent work at the DSTO has resulted in the development 
of a bi-axial VEH device, capable of harvesting useable energy from wide-band bi-axial 
excitations within a small device footprint, and therefore proving appropriate for 
integration into an in-situ SHM system for air platforms. The device operates as a 
permanent-magnet/ball-bearing mechanical oscillator, free to respond to host structure 
excitations. An electromagnetic wire coil transducer (between the magnet and ball-
bearing) produces electrical output due to a changing magnetic field distribution as the 
ball-bearing oscillates. This Technical Note provides a brief summary on the functioning of 
the VEH device, and details the modelling work undertaken at the DSTO to investigate the 
device. The complex nonlinear dynamics and electromagnetic properties of the device 
require numerical computation tools such as finite element analysis (FEA), and advanced 
mathematical techniques pertaining to nonlinear oscillations and discontinuous systems. 
The outcome of the modelling work is a full description of the mechanical dynamics and 
electrical transduction of the VEH device, and a capability for optimisation work and 
guidance for design decisions.  
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1. Introduction  

1.1 Vibration energy harvesting  

Vibration energy harvesting has attracted a large amount of attention from the scientific 
community in recent years [1,2], and in particular is being investigated at DSTO for the 
purposes of powering in-situ structural health monitoring systems [3,4]. Many current 
commercial designs are not suitable for use in the aerospace domain, as they are often large 
[5], respond only uni-axially [6], and to a narrow bandwidth of excitation frequencies [7]. In 
the interests of an in-situ device, DSTO is investigating a compact harvester design intended 
to produce output power from large host accelerations and a wide-band of frequencies [8]. 
Nonlinear vibration energy harvesting approaches have shown promise for these 
requirements, for example vibro-impact [9], bi-stability [10], and buckling [11] etc, all used to 
increase device bandwidth. In addition, varying transducer technologies (electromagnetic 
[12,13], magnetoelectric [4], etc) have allowed compact designs. 
 
Vibration energy harvesting techniques developed by DSTO are analysed in this Technical 
Note, in particular the investigation of a prototype harvesting arrangement (utilising a 
permanent-magnet/ball-bearing mechanical oscillator, and an electromagnetic transducer). A 
brief background is provided on the harvesting work, with an emphasis on the description of 
the modelling undertaken to explore the prototype harvester. The main purpose of this 
Technical Note is to provide sufficient technical detail so as to allow the modelling work 
described herein to be reproduced. To facilitate this goal a comprehensive set of appendices 
has been included, and a companion Compact-Disk is attached containing modelling code 
and other files. 
 
1.2 Prototype harvester  

The vibration energy harvester prototype being developed at DSTO [3] (represented 
schematically in Figure 1) consists of wire-coil electromagnetic (EM) transducer located 
between a permanent magnet and a ball-bearing. The magnet/ball-bearing acts as a 
mechanical oscillator, producing relative motion in response to host structure vibrations. The 
ball-bearing moves in the x-y plane across the surface of a wear-pad on top of the transducer, 
subject to a magnetic restoring force. The motion of the ball-bearing across the magnet 
produces a change in the magnetic field distribution in the volume occupied by the EM 
transducer, resulting in an induced electromotive force (EMF) in the wire-coil by Faraday’s 
Law of Induction [14], and hence power output across an electrical load. 
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Figure 1 The arrangement of the prototype harvester, displaying the host, magnet, coil, wear-pad, 

and ball-bearing configuration. The ball-bearing is displaced from the ‘Central Ball’ 
position to the ‘Offset Ball’ position in response to host vibrations – due to the magnetic 
restoring force Fy. Replicated from [15]. 

The ball-bearing can be enclosed in an ‘unrestrained’ sense (i.e. no limit to x-y plane 
movement), or in a ‘restrained’ sense – where rigid stops limiting the displacement amplitude 
are implemented for vibro-impact behaviour [16]. 
 

2. Modelling  

This section details the various models used to investigate the vibration energy harvester 
prototype. The modelling begins with the prediction of mechanical dynamics – requiring 
finite element analysis (FEA) models to solve the magnetic aspect of the oscillator. COMSOL 
Multiphysics software [17] was used to determine the magnetic restoring force on the ball-
bearing, enabling analytic treatment of the dynamic equations (for unrestrained and 
restrained setups). Furthermore, COMSOL was used to solve the changes in the magnetic field 
distribution in response to ball-bearing displacement, and investigate the coupling of 
mechanical dynamics to the electromagnetic transduction (validating a quasi-static treatment 
of the problem). Various analytic and numeric techniques were then implemented to model 
the output of the vibration energy harvester. 
 
2.1 Three dimensional COMSOL modelling 

Multiple three dimensional multiphysics models in COMSOL were analysed in order to 
investigate the modelling of the harvester system. A representation of the harvester was 
created and computational physics and solvers are applied to the system. 
 
A static model in the Magnetic Fields, No Currents interface was computed in a Parametric Sweep 
solver in order to determine the static magnetic restoring force on the ball-bearing (by 
computation of Maxwell’s stress tensor) at varying ball-bearing positions. The geometry of the 
static model, as depicted in Figure 2, includes all of the components of the prototype harvester 
(base, magnet, coil, wear-pad, and ball-bearing), with the coil modelled as an air gap. The 
material properties and physics were implemented in the model – as fully detailed in 
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Appendix A.1. By solving in the parametric sweep, a position-dependant restoring force was 
determined for use in later analysis. The results show that the restoring force acts similar to a 
softening spring in a mass-spring-damper system. Refer to Appendix A.1 for details on the 
model setup – including the parameters, geometry, physics, and solver configurations 
required. 
 
A transient model requires the combination of the Magnetic Fields interface (for magnetic and 
electrical properties), the Deformed Geometry interface (to produce the ball-bearing movement 
in time), and the Global ODEs interface (to define a load attached to the coil). The complex 
coupling of these physics modes requires care in the setup of the model and solvers, all of 
which is detailed in Appendix A.2. The coil was handled in the model as an active component 
- a numerically calculated multi-turn coil domain, requiring a purpose-built geometry as in 
Figure 3. The movement of the ball-bearing was user-defined, as a sinusoidal function 
(matching the realistic displacement of the ball-bearing in response to a sinusoidal base 
displacement). The movement of the ball-bearing across the coil domain produces an induced 
voltage, and a current through a defined load. The results show that the system can be treated 
quasi-statically (that the static restoring force can be used dynamically, and the mechanical 
and transduction problems can be treated separately) - highlighted in particular in section 2.3. 
 

 
Figure 2 A meshed geometry for the static three dimensional COMSOL model, demonstrating the 

size of the mesh in various geometry components (domains) 
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Figure 3 A geometry for the transient three dimensional COMSOL model, demonstrating the 

composition of the coil domains, and the internal coil boundary referred to in Appendix A.2 

 
2.2 Mechanical dynamics 

As the motion of the ball-bearing determines the change in magnetic field distribution and 
thus the output power of the vibration energy harvester, the modelling of the response of the 
ball-bearing to host excitation is essential to the investigation of the system. In the following 
sections, the governing equations are developed for a single degree of freedom (SDOF) 
sinusoidal host excitation in the y-direction. The frequency-amplitude response of the ball-
bearing in the unrestrained configuration is analytically derived. Further, the restrained 
amplitude configuration is explored by developing a novel probability-based treatment of 
vibro-impact theory, and a frequency-probability response is determined. 
 
2.2.1 An equation of motion for the unrestrained ball-bearing 

The ball-bearing experiences a position-dependant restoring force Fy (N), which was shown by 
COMSOL FEA force calculations (see Figure 4) to be nonlinear, of the form, 

 

,)( 5
5

3
31 ykykykyFy   (1) 

 
where k1 (N m-1), k3 (N m-3), and k5 (N m-5) denote the fitted spring constants. Similarities are 
drawn to the well known cubic Duffing oscillator [18,19]. 
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Figure 4 An example restoring force calculation result from a COMSOL static model, with a quintic 

polynomial fit. Replicated from [20]. 

In addition to the magnetic restoring force, damping is present in the system as a combination 
of mechanical and electrical parameters [21], which was modelled as an equivalent total linear 
viscous damping  (N s m-1). Given a base excitation, the system is described as a mass-
spring-damper oscillator, 

 
    ,0)()()()()(  tstyFtstytyM y   (2) 

 
where y(t) is the absolute displacement (m) of the ball-bearing with mass M (kg) and s(t) is the 
displacement of the base (m). The base acceleration is a sinusoidal waveform with a given 
excitation frequency  (rad s-1) and acceleration amplitude a (m s-2). Defining the relative 
motion of the ball-bearing with respect to the base as u(t) = y(t)-s(t), the substitution of the 
base acceleration )cos()( tats  and restoring force is made into equation (2), 
 

).(cos)()()()()( 5
5

3
31 taMtuktuktuktutuM     (3) 

 
Dashed parameters ’ and ki’ are introduced to signify mass normalisation, 
 

).(cos)(')(')(')(')( 5
5

3
31 tatuktuktuktutu     (4) 

 
 The general equation above can be explored analytically to determine the mechanical 
dynamics of the system. 
 
2.2.1.1 The homotopy analysis method solution 
The homotopy analysis method (HAM) developed by Liao and Tan [22] is a new technique in 
finding solutions to nonlinear differential equations – involving a continuous mapping of an 
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assumed solution into a series solution. HAM was applied to the equation developed in 
section 2.2.1 in a similar fashion to previous results exploring a forced Duffing equation [23]. 
The HAM approach begins by defining two new variables for substitution, 
 

,t  (5) 
 

)()(  Atu , (6) 
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53
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 (7) 

 
The HAM approach produces series solutions to the new variables in equations (5) and (6) by 
means of solution deformations – dependant on the construction of a nonlinear operator from 
equation (7). Details of the HAM procedure with regard to nonlinear operators and solution 
deformations are left to Appendix B.1. The series solutions take the form, 
 

,)()()(
0

0 





n
n   (8) 

 

.
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0 





n
nAAA  (9) 

 
The form of the initial term in the )(  series determines the form of the HAM solution, and 
is selected as the well-known harmonic balance method solution to the forced Duffing-type 
oscillator [19],  
 

),cos()(0    (10) 

 
where β is the unknown phase difference. The chosen initial term is referred to as the base 
function, and serves as an initial solution for the development of the homotopy. Continual 
solution deformations are developed from the base function and substituted into the series 
solutions, obtaining successively higher harmonics in the solution to equation (4). For 
example, the 1st order solution is, 
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The HAM approach clearly shows higher odd harmonics in the solution, admitting possible 
‘superharmonics’. Convergence is controlled with selection of the auxiliary control parameter 

 (as described by Liao and Tan [ 22]). The 1st order HAM solution represents an approximate 
analytic solution to the nonlinear differential equation (4), from which  displacement 
predictions can be made (as in Figure 5). 
 

 
Figure 5 A comparison between experimental displacements and the HAM model results. The ‘drop-

down’ frequency at higher drive forces are accurately modelled, and the frequency-
displacement model matches well. Replicated from [20]. 

 
2.2.2 Vibro-impact operation and the probability-of-existence 

The differential equation (4) derived in section 2.2.1 is now subjected to amplitude restraints 
to explore the vibro-impact operation of the harvester in the restrained configuration. Given 
that the oscillation of the ball-bearing is limited by a rigid stop located at  (m) from the 
neutral position (as in Figure 6), impacts occur under certain conditions. 
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Figure 6 An example configuration for the restrained, vibro-impacting vibration energy harvester, 

with rigid stops installed at gap Replicated from [24]. 

During the impact period, the contact mechanics are modelled by Hertzian contact theory, 
modified to include energy loss (hysteric damping) - the Hyster-Hertz contact model [25]. 
This model is derived under assumptions of non-conforming and small contact area collisions, 
with no plastic deformation and no friction between the objects. Previous work [26] derives 
the relative Hyster-Hertz contact force as, 
 

))1(
)(

)(

4

3
1())(()())(),(( 22/3 e

tu

tu
tuKSgntutuF HZHC 




 , (14) 

 
where e is the coefficient of restitution, and KHZ is the Hertzian contact stiffness determined 
from ball-bearing radius R1 (m) and material properties (Poisson’s Ratio  and Young’s 
Modulus E),  
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i

i
i E

h

 21

 . (16) 

 
where i = 1, 2. The Hertzian contact stiffness is 8.70×109 N m-3/2 for a steel ball-bearing 
(R1 = 12.7 mm, = 0.3, E1 = 200 GPa) on an aluminium stop (2= 0.33, E2 = 70 GPa) impact. 
Finally, the governing equations are formed, 
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,)0()0( 11 uuuu W    (18) 

 
with initial conditions , , , , , and  selected for continuity between equations. 
Mathematica software [27] was used to run simulations of the above system of equations, with 
an event-driven switching technique using ‘NDSolve’ functionality. Appendix 

0t 0u 0u 1t 1u 1u

C.1 fully 
details the scripting developed. 
 
The result of a system simulation is that, at given initial conditions of displacement, velocity, 
and the phase difference between the base and ball-bearing, a system ‘state’ is determined. 
The behaviour of interest is continuous impacting (indicating high-energy output operation) - 
defined as the system state ‘Steady State Impacting’, and corresponding in the time series to 
sustained and consecutive impacts. Two other possible system states are ‘Transient Impacting’ 
(falling to a low energy operation mode after briefly impacting), and ‘Not Impacting’ (existing 
only in the low energy operation mode). Determining system states over all possible initial 
conditions, and over varying drive frequency values, a metric for vibro-impact regime 
existence is found (for more detail, refer to [24, 26]). The ratio of ‘Steady State Impacting’ 
states to all states is defined as the probability-of-existence, and displaying this as a function 
of frequency results in the frequency-probability response of a given system. 
 
2.2.2.1 Parallelised computation of system states 
As discussed above, the system of equations of the vibro-impacting harvester need to be 
simulated over a large number of variables - initial conditions, drive parameters, rigid stop 
sizes, etc. Mathematica has inbuilt parallel processing functionality – allowing simulations to 
be distributed across multiple kernels and therefore computed simultaneously with multiple 
CPU cores. Due to overheads involved in the distribution process and the external data saving 

UNCLASSIFIED 
9 



UNCLASSIFIED 
DSTO-TN-1174 

mechanism implemented, a n-cores to n-times improvement is not achieved – however with 
heavily CPU/RAM intensive calculations such as looped ‘NDSolve’ calculations, 
improvement is significant. 
 
Using an 8-core machine (i7-920 @ 2.67 GHz, 16GB RAM), the average runtime of batch 
impact stitching simulations is decreased from 0.06 seconds per solution on one kernel, to 
0.01 seconds per solution on 8 kernels – over a test run of 5,000 simulations. Similar 
performance was noted over full probability-of-existence solution sets requiring 250,000+ 
simulation loops. Appendix C.2 details scripting techniques enabling the parallelised 
execution of the script outlined in Appendix C.1. 
 
2.3 Electromagnetic transduction 

As described previously, the movement of the ball-bearing across the coil produces a change 
in magnetic flux through it, therefore inducing voltage by Faraday’s Law of Induction and 
hence power in an attached electrical load. Modelling for this electromagnetic transduction 
was undertaken by numerical analysis of finite element models created in COMSOL. A 
coupled transient mechanical and electromagnetic model was solved with Magnetic Fields and 
Deformed Geometry interfaces as discussed in section 2.1. This coupled transient model was 
used to determine the effect of the electrical load on the transduction, and on the mechanical 
dynamics. It was demonstrated that the back EMF from current flow in the circuit had no 
impact on the magnetic restoring force, and that the voltage across a resistive load is equal to 
that produced by voltage divider on the unloaded circuit (refer to [28] for full details). Or 
more simply, that the ball-bearing dynamics and transduction mechanism have negligible 
dynamic interaction. Therefore, the modelling is justified in separating the mechanical and 
electrical aspects of the problem. Combining the two separate physics models quasi-statically 
provides a representative time-varying output for the vibration energy harvester. 
 
2.3.1 Coil modelling and matched resistive load power generation 

Given the assumptions of quasi-static behaviour, modelling the magnetic flux becomes a 
simple task for COMSOL. The static three-dimensional model detailed in section 2.1 was used 
to evaluate the B field (magnetic flux density) by enforcing flux conservation, as the ball is 
displaced in the x-y plane. COMSOL produced the B field at multiple interpolated points 
(x,y,z), which was then used in the following analysis to determine the output voltage by an 
implementation of Faraday’s Law of Induction. A coil was modelled in the analysis as discrete 
wire loops, arranged as a simple square packed array within given parameters of outer (rout) 
and inner radius (rin), and coil height (h). A coil turns ratio Nratio of 15.1~12/4  is used [28] to 
compare a square packed array to a realistic hexagonal packed wound wire-coil, shown in 
Figure 7. 
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Figure 7 A photo of a hexagonally packed wound wire coil transducer, with inner and outer radii of 5 

and 15 mm respectively. Replicated from [28]. 

As resistance can be calculated from the coil geometry, matched resistive load voltage was 
found as a voltage divider from the unloaded calculation, and output power was calculated. 
The modelling approach here can be used with any displacement in the x-y plane (i.e. biaxial 
harvesting), and easily extended to multiple-coil arrangements (to harvest from circular 
motions). 
 
2.3.1.1 Numerical computation of power output 
The voltage induced by the coil is a function of the magnetic flux through each wire loop of 
the coil, where the flux in each wire loop is defined as the surface integral of the B field 
component normal to the surface enclosed by the loop, 
 

,
1






N

i

i
ind dt

d
V  (19) 

 
,),( 

 


i iSx Sy
zi yxBdydx  (20) 

 
where Si is the surface enclosed by the i-th coil wire loop (normal to the z direction), Bz(x,y) is 
the discrete value of the z-direction component of the B field at an interpolated point (x,y) on 
the surface, and dx and dy are sufficiently small widths of interpolation. Combining equations 
(19) and (20), including the aforementioned coil turns ratio, and writing the B field as a 
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function of ball-bearing positions  and , a final expression for determining the 

induced voltage in a coil as a function of time is developed, 

)(tux )(tu y
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i i
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The displacement modelling work of section 2.2 was used to determine the ball-bearing 
position with respect to time in the x-y plane. With respect to a resistive loaded harvester, the 
calculated induced voltage was applied to a simple coil/load voltage divider, and output 
voltage is determined. Figure 8 demonstrates the open-circuit output voltage as a function of 
frequency for a SDOF arrangement, compared to experimental measurements. 
 

 
Figure 8 A comparison between the peak open circuit output voltage of a prototype energy harvester 

as a function of frequency (for a frequency down-sweep), and the results of the numeric 
model of the prototype. For a 500 milli-g base excitation, at 16 Hz, the measured voltage is 
0.489 V, and the predicted voltage is 0.462 V.  Replicated from [28].  

In addition, the peak power across a matched resistive load can be calculated as, 
 

,
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 (23) 

 
where Vind,p is the peak open circuit voltage (note that attaching a matched load resistor across 
the coil will halve the coils output voltage), Rcoil is the resistance of the coil, rwire,cu is the radius 
of the copper wire , ρcu is the resistivity of copper, and ri is the radius of the i-th wire loop. For 
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4.0 Ω coil transducer) can 
en be estimated using equation 22, and is found to be 20.3 mW.  

varyi
 determining the flux variation 

a 12 Hz, 500 milli-g base excitation Figure 8 shows a maximum measured open circuit voltage 
of 0.571 V. The maximum output power of the prototype harvester (
th
 
Appendix D contains two example scripts – D.1 provides the extraction of data from 
COMSOL in MATLAB, and D.2 allows the data to be analysed in Mathematica. Assuming a 
radial symmetric flux distribution, a SDOF static COMSOL solve is rotated in the x-y plane, 
the coil flux computations are made for each ball-bearing position, and the resultant position-

ng flux is interpolated on the plane. Calculating the path of the ball-bearing )(tux  and 
)(tu y  in the plane and )(t  produces the output ind(t) 

nd peak power PP. 
 

3. Conclusion 

 16 Hz, 500 milli-g excitation, comparing well with 
e predicted output voltage of 0.462 V. 
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Appendix A:  Three dimensional COMSOL models  

This appendix details the setup of various three dimensional COMSOL models, including 
geometries, physics, and solvers. The required settings changes are listed here; otherwise all 
options are left as default. The attached multimedia contains COMSOL 4.3a models – 
unsolved and solved – parameters, and output results. 
 
A.1. Static model (magnetic fields, no currents) 

Start a new model – 3D, Magnetic Fields No Currents (mfnc), Stationary Solve. 
 
A.1.1 Parameters 

In Global Definitions, Parameters, it is possible to add global constants. Some model geometry, 
physics, and solver settings are detailed here. The required parameters can be added to the 
COMSOL model by loading the following as a text file. 
 
bb_rad 12.7[mm] 
b_hei 5[mm] 
b_rad 30[mm] 
m_hei 5[mm] 
m_rad 15[mm] 
c_hei 2.7[mm] 
c_radout 15[mm] 
wp_hei 0.8[mm] 
wp_rad 15[mm] 
air_rad 0.1[m] 
bond_low 0[um] 
bond_high 0[um] 
c_h0 b_hei+m_hei+bond_low 
c_h1 c_h0+c_hei 
wp_h0 c_h1+bond_high 
wp_h1 wp_h0+wp_hei 
bb_offset 0.1[mm] 
bb_zpos wp_h1+bb_offset+bb_rad 
c_hei_eff wp_h0-(b_hei+m_hei) 
wp_mur 10 
bb_ypos 0[mm] 
bb_ymax 15[mm] 
bb_ymin 0[mm] 
bb_ystep 1[mm] 
t 0[s] 

 
Probes can be used to monitor variables during solve time, providing live updates of possible 
non-convergence and parameters of interest. Suggested global variable probes can be added 
under Model, Definitions. 

1. mfnc.Forcey_bb – monitors the y-direction restoring force on the ball-bearing. 
 
A.1.2 Geometry 

The three dimensional model is implemented in the Model, Geometry menu. COMSOL requires 
an enclosed air domain to resolve the magnetic fields physics (for boundary conditions). Note 
that the coil domain consists of both bond lines, and the coil itself. The wear-pad is a separate 
domain. 
 

1. Air domain – sphere, position “(0,0,0)”, radius “air_rad”. 
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2. Base domain – cylinder, position “(0,0,0)”, radius “b_rad”, height “b_hei”. 
3. Magnet domain – cylinder, position “(0,0,b_hei)”, radius “m_rad”, height “m_hei”. 
4. Coil domain – cylinder, position “(0,0,b_hei+m_hei)”, radius “c_radout”, height 

“c_hei_eff”. 
5. Wear-pad domain – cylinder, position “(0,0,wp_h0)”, radius “wp_rad”, height 

“wp_hei”. 
6. Ball-bearing domain – sphere, position “(0,bb_ypos,bb_zpos)”, radius “bb_rad”. 

 
A.1.3 Physics implementation 

The material properties for the model are added in the Model, Materials menu, from the 
Materials Library. 
 

1. Air – selection: all domains. 
2. Soft Iron (with losses) – selection: manual, domains “base” and “bearing”. 

 
The physics properties are added to the model with Model, Add Physics (or on initial setup), 
with the selection for the three dimensional static model being Magnetic Fields, No Currents 
(mfnc). The properties are added under the MFNC menu. 
 

1. Magnetic Flux Conservation 1 – default (all domains). 
2. Magnetic Insulation 1 – default (all boundaries). 
3. Initial Values 1 – default (all domains). 
4. Magnetic Flux Conservation 2 – selection: “base” and “bearing” domain. Magnetic 

Field, Constitutive relation: “BH curve”, Magnetic flux density norm: “from material”. 
5. Magnetic Flux Conservation 3 – selection: “magnet” domain. Magnetic Field, 

Constitutive relation: “Remanent flux density”, Relative permeability: “from 
material”, Remanent flux density: “(x,y,z) = (0,0,1.3)”. 

6. Magnetic Flux Conservation 4 – selection: “wear-pad” domain. Magnetic Field, 
Constitutive relation: “Relative permeability”, Relative permeability: “user defined”, 
“wp_mur”, “Isotropic”. 

7. Force Calculation 1 – selection: “bearing” domain. Force name: “bb”, Torque axis: 
(0,0,1), Torque rotation point: (0,0,0). 

 
Meshing is added in Model, Mesh 1. It is highly geometry dependant, with a goal of a fine 
mesh on the ball-bearing (for accurate force evaluation) and at least 2-3 layers of elements in 
other domains for convergence. Given the provided parameters in A.1.1, 
 

1. Free Triangular 1 – selection: “wear-pad” top surface boundary. 
a. Size 1 – selection: “wear-pad” domain, Element size: custom, Maximum 

element size: 1e-3. 
2. Swept 1 – selection: “wear-pad” domain, Source faces: “wear-pad” top surface 

boundary, Destination faces: “wear-pad” bottom surface boundary. 
a. Distribution 1 -  selection: “wear-pad domain”, Distribution: “Fixed number of 

elements”, Number of elements: 3. 
3. Convert 1 – selection: “wear-pad” domain, Element split method: “Insert diagonal 

edges”. 
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4. Free Tetrahedral 1 – selection: all except “wear-pad” domain. 
a. Size 1 - selection: “bearing” domain, Element size: custom, Maximum element 

size: 1.5e-3. 
b. Size 2 - selection: “coil” domain, Element size: custom, Maximum element size: 

3e-3. 
c. Size 3 - selection: “magnet” domain, Element size: custom, Maximum element 

size: 2e-3. 
d. Size 4 - selection: “base” domain, Element size: custom, Maximum element 

size: 3e-3. 
e. Size 5 - selection: “air” domain, Element size: custom, Maximum element size: 

3e-2, Maximum element growth rate: 1.25. 
 
A.1.4 Solver configuration 

The solver is set up in the Study menu (or on initial setup). Right-click to add a Parametric 
Sweep, and make sure there is a study step, Step 1: Stationary. Right-click again and select Show 
default solver. 
 

 Parametric sweep: 
o Sweep parameter: bb_ypos. 
o Parameter value list: range(bb_ymin,bb_ystep,bb_ymax). 

 Solver Configurations, Solver 1, Stationary Solver 1: 
o Left as default. Optional tweaks of direct vs iterative, changing coarse solvers 

(MUMPS vs PARDISO), etc for faster solve time with high memory, multi-core 
machines. 

 
Right-click Study 1 to Compute. Results can be obtained from Data Sets and Derived Values, or 
in MATLAB with the LiveLink (see Appendix D.1). A plot of “mfnc.Forcey_bb” demonstrates 
the position dependant restoring force on the ball-bearing. 
 
Solve time on an 8-core machine (i7-920 @ 2.67 GHz, 16GB RAM) is approximately 15 minutes. 
 
A.2. Transient model (magnetic fields, deformed geometry, global 
ODEs) 

Start a new model – 3D, Magnetic Fields (mf), Deformed Geometry (dg), Global ODEs and 
DAEs (ge), Stationary Solve. 
 
A.2.1 Parameters 

In Global Definitions, Parameters, it is possible to add global constants. Some model geometry, 
physics, and solver settings are detailed here. The required parameters can be added to the 
COMSOL model by loading the following as a text file. 
 
bb_rad 10[mm] 
b_hei 5[mm] 
b_rad 30[mm] 
m_hei 10[mm] 
m_rad 15[mm] 
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c_hei 2[mm] 
c_radin 5[mm] 
c_radout 15[mm] 
cair_rad 20[mm] 
wp_hei 0.8[mm] 
wp_rad 15[mm] 
bb_travel 15[mm] 
air_rad 0.1[m] 
bond_low 0[mm] 
bond_high 0[mm] 
bb_offset 0.1[mm] 
c_h0 b_hei+m_hei+bond_low 
c_h1 c_h0+c_hei 
wp_h0 c_h1+bond_high 
wp_h1 wp_h0+wp_hei 
bb_zpos wp_h1+bb_offset+bb_rad 
c_hei_eff wp_h0-(b_hei+m_hei) 
Nturns 198 
rho0 1.72e-8[ohm*m] 
I_step_wid 0.01 
t 0[s] 
wire_rad 127[um] 
wire_area pi*wire_rad^2 
startpos –bb_travel 
period 1/10 

 
Adding a Function, Analytic allows the ball-bearing displacement to be described. 

 Function name: bb_displ_cos 
 Expression: (bb_travel*cos(2*pi*1/period*t+pi)-startpos)[m] 
 Arguments: t 

 
Adding a Function, Step allows the soft turn-on of current in the coil to be described. The turn-
on is required to allow convergence in the time-dependant solution. 

 Function name: I_step 
 Location: I_step_wid/2*period 
 From: 0 
 To: 1 
 Size of transition zone: I_step_wid*period 

 
Probes can be used to monitor variables during solve time, providing live updates of possible 
non-convergence and parameters of interest. Suggested global variable probes can be added 
under Model, Definitions. 

1. dg.minqual – monitors the minimum quality of the mesh. 
2. mf.mtcd1.Vind – monitors the induced voltage in the coil. 
3. Icoil – monitors the current in the coil. 

 
A.2.2 Geometry 

The three dimensional model is implemented in the Model, Geometry menu. COMSOL requires 
an enclosed air domain to resolve the magnetic fields physics (for boundary conditions). Note 
that the coil domain consists of both bond lines, and the coil itself. The coil is described by 
multiple geometry domains – the turns of the coil, the inner air gap, and an outer air gap 
(used to aid mesh movement). A surface is inserted in the coil turn domain perpendicular to 
the turns, in order to specify coil turn input for Automatic Current Calculation. The wear-pad is 
not modelled as a domain in this study, due to the fine mesh requirement. The ball-bearing is 
still offset vertically by the height of the physical wear-pad. 
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1. Air domain – sphere, position “(0,0,0)”, radius “air_rad”. 
2. Base domain – cylinder, position “(0,0,0)”, radius “b_rad”, height “b_hei”. 
3. Magnet domain – cylinder, position “(0,0,b_hei)”, radius “m_rad”, height “m_hei”. 
4. Coil domains: 

a. Outer coil: cylinder, position “(0,0,b_hei+m_hei)”, radius “cair_rad”, height 
“c_hei_eff”. 

b. Coil turns: cylinder, position “(0,0,b_hei+m_hei)”, radius “c_radout”, height 
“c_hei_eff”. 

c. Inner coil: cylinder, position “(0,0,b_hei+m_hei)”, radius “c_radin”, height 
“c_hei_eff”. 

5. Ball-bearing domain – sphere, position “(0,startpos,bb_zpos)”, radius “bb_rad”. 
6. Work Plane 1 – yz-plane, x=0. 

a. Plane Geometry – Rectangle 1: width “c_radout-c_radin”, height “c_hei_eff”, 
Base: Corner, xw “c_radin”, yw “m_hei+b_hei”. 

7. Convert to Surface 1 – Input objects: work plane 1. 
 
A.2.3 Physics implementation 

The material properties for the model are added in the Model, Materials menu, from the pre-
existing library. 
 

1. Air – selection: all domains, change Electrical Conductivity to 1[S/m] for convergence. 
2. Soft Iron (with losses) – selection: manual, domains “base” and “bearing”. 

 
The physics properties are added to the model with Model, Add Physics (or on initial setup), 
with the selections for the three dimensional transient model being Magnetic Fields (mf), 
Deformed Geometry (dg), Global ODEs and DAEs (ge). The properties are added under each 
physics menu. 
 
Note the settings for the coil domain – a current excited multi-turn coil domain, with an 
Automatic Current Calculation on the Numeric coil type, and the small perturbation to the 
coil current (1e-9) for convergence. For all physics denoted by (*), right-click and add Gauge 
Fixing for A-Field. 
 
The deformed geometry interface allows all domains to freely deform, then imposes 
constraints on all boundaries, and finally imposes a time varying displacement on the y-
direction of the ball-bearing boundaries. The displacement is in the geometry and mesh, 
which therefore requires periodic remeshing (handled later in the solvers section). 
 
Also note the settings for the global ODEs – the equation “Icoil” calculates the current in the 
coil, using the induced voltage and the series connection of the coil resistance “mf.mtcd1.R” 
and a load resistor (in this case, matched to the coil). A smoothing function “I_step” is used to 
allow soft turn-on convergence. The equation “Vind” simply evaluates the internal induced 
voltage equation to avoid circular variables issues in the “Icoil” calculation. 
 

1. Magnetic Fields 
a. Ampere’s Law 1 (*) – default (all domains). 
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b. Magnetic Insulation 1 – default (all boundaries). 
c. Initial Values 1 – default (all domains). 
d. Ampere’s Law 2 (*) – selection: “base” and “bearing” domain. Magnetic Field, 

Constitutive relation: “BH curve”, Magnetic field norm: “from material”. 
e. Ampere’s Law 3 (*) – selection: “magnet” domain. Magnetic Field, 

Constitutive relation: “Remanent flux density”, Relative permeability: “from 
material”, Remanent flux density: “(x,y,z) = (0,0,1.3)”. 

f. Multi-Turn Coil Domain 1 (*) – selection: “coil turn” domain. Coil type: 
Numeric, Number of turns: “Nturns”, Coil wire cross-section area: 
“wire_area”, Coil Excitation: Current, Coil Current: “Icoil+1e-9”. 

i. Automatic Current Calculation 1 – Off-diagonal scaling: 1 (depending 
on Coil Investigation result – see solvers section) (option not present in 
COMSOL 4.3a+). 

1. Electric Insulation 1 – selection: all boundaries. 
2. Input 1 – selection: “internal coil turns” boundary (created as a 

surface converted work plane). 
g. Force Calculation 1 – selection: “bearing” domain. Force name: “bb”, Torque 

axis: (0,0,1), Torque rotation point: (0,0,0). 
2. Deformed Geometry 

a. Fixed Mesh 1 - default (all domains). 
b. Prescribed Mesh Displacement 1 - default (all boundaries). 
c. Free Deformation 1 – selection: all domains. 
d. Prescribed Mesh Displacement 2 – selection: all boundaries. Prescribed 

displacements: “(dx,dy,dz) = (0,0,0)”. 
e. Prescribed Mesh Displacement 3 – selection: all “bearing” boundaries. 

Prescribed displacements: “(dx,dy,dz) = (0,bb_displ_cos(t),0)”. 
3. Global ODEs and DAEs 

a. Global Equations 1 – add new equations, 
i. Icoil, Icoil-I_step(t)*Vind/(2*mf.mtcd1.R), 0, 0. 

ii. Vind, Vind-mf.mtcd1.Vind, 0, 0. 
 
Meshing is added in Model, Mesh 1. It is highly geometry dependant; however solve time in a 
transient model with many highly coupled physics modes is very long even for moderate size 
meshes. A course mesh is implemented given the provided parameters in A.2.1. Note the 
minimum mesh quality with Mesh, Statistics. 
 

1. Free Tetrahedral 1 – selection: all domains. 
a. Size 1 - selection: “bearing” domain, Element size: custom, Maximum element 

size: 8e-3. 
b. Size 2 - selection: “coil turns”, “coil inner air”, “coil outer air” domains, 

Element size: custom, Maximum element size: 3e-3. 
c. Size 3 - selection: “magnet” domain, Element size: custom, Maximum element 

size: 8e-2. 
d. Size 4 - selection: “base” domain, Element size: custom, Maximum element 

size: 5e-3. 
e. Size 5 - selection: “air” domain, Element size: custom, Maximum element size: 

5e-2, Maximum element growth rate: 1.25. 
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A.2.4 Solver configuration 

The solver is set up in the Study menu (or on initial setup). This model uses 3 separate studies 
in total, in order to demonstrate stability in the settings. To access the advanced settings in 
each study after choosing the correct physics, right-click the study and select Show default 
solver. Note the advanced settings regarding remeshing and maximum time steps – used to 
ensure that the deforming mesh does not reach a low quality or fail, and that the full 
transience can occur. Also note that the Segregated Solver in Study 3 is different to the default 
– the ODE physics calculation must be performed coupled to the MF and Gauge Fixing 
variables. 
  

 Study 1 – Coil: computes the currents in the coil to determine coil directions (ensures 
correct path). 

o Steps 
 Step 1: Coil Current Calculation 

 Coil name: 1. 
 Physics and variables selection: Magnetic Fields only. 

o Solver Configurations: default. 
o Results: plot of “mf.mtcd1.eCoil” streamlines (on internal boundary surface) 

demonstrates current path in the coil. This path should be roughly circular – 
changing Off-diagonal scaling in the Numeric coil settings changes the path. 
Note that as of COMSOL 4.3a, off-diagonal scaling is automatic. 

o Update the model and use the new settings in Study 2. 
 Study 2 – DG: computes the transient movement of the geometry with no physics 

(ensures no remeshing problems). 
o Steps 

 Step 1: Stationary 
 Physics and variables selection: Deformed geometry only. 

 Step 2: Time Dependent 
 Times: range(0,0.003,0.25)*period. 
 Physics and variables selection: Deformed geometry only. 
 Study Extensions: Automatic Remeshing enabled. 

o Solver Configurations: default. 
 Time-Dependent Solver 1 

 Time Stepping - Maximum Step: 0.003*period. 
 Automatic Remeshing - Minimum mesh quality: 0.04, 

Consistent Initialization: Backward Euler. 
 Fully Coupled 1 – Termination: Iterations, Iterations: 1. 

o Results: plot of “qual” as a slice through x=0 shows the mesh quality as the 
ball-bearing moves in the transient solution (useful to set Results While Solving 
for live plots). The volume immediately under the ball-bearing is generally the 
point of failure. Ensure that the deforming geometry and automatic remeshing 
technique solves for the entire time range (without back-stepping). Altering 
the mesh, the maximum step time, and the automatic remeshing minimum 
quality will tune the model to allow solving. 
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o Update the model and use the new settings in Study 3. 
 Study 3 – Full Solve: computes the transient movement of the geometry with all 

physics. 
o Steps 

 Step 1: Coil Current Calculation 
 Physics and variables selection: all. 

 Step 1: Stationary 
 Physics and variables selection: all. 

 Step 2: Time Dependent 
 Times: range(0,0.003,0.25)*period. 
 Physics and variables selection: all. 
 Study Extensions: Automatic Remeshing enabled. 

o Solver Configurations: default. 
 Stationary Solver 1 

 Segregated 1 
o Segregated Step 1: Variables: “mod1.xyz”, default 

Direct solver, Constant (Newton) method. 
o Segregated Step 2: Variables: “mod1.A”, 

“mod1.mf.psi”, “mod1.ODE1”, Iterative 1 solver, 
Constant (Newton) method. 

 Time-Dependent Solver 1 
 Time Stepping - Maximum Step: 0.003*period. 
 Automatic Remeshing - Minimum mesh quality: 0.04, 

Consistent Initialization: Backward Euler. 
 Segregated 1 

o Segregated Step 1: Variables: “mod1.xyz”, default 
Direct solver, Constant (Newton) method. 

o Segregated Step 2: Variables: “mod1.A”, 
“mod1.mf.psi”, “mod1.ODE1”, Iterative 1 solver, 
Constant (Newton) method. 

o Results: plot of Vind and Icoil demonstrate the electrical output of the 
harvester for the given simulation. 

 
Solve time on an 8-core machine (i7-920 @ 2.67 GHz, 16GB RAM) is approximately 12 hours. 
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Appendix B:  Harvester ball-bearing dynamics  

B.1. Homotopy analysis method   

Recalling the nonlinear differential equation (4) in terms of new parameters, 
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From Liao and Tan [22], we construct a homotopy composed of linear and nonlinear operators 
(denoted by L and N respectively), with a parameter q denoting the embedding parameter 
responsible for the homotopy, 
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As the embedding parameter changes from 0 to 1, );( q  deforms from the initial guess 

)(0   to the solution )( , and from an unknown initial amplitude  to the solution . 
Provided proper selection of auxiliary control parameter  , the convergent series solution takes 
the form,  
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The base function of Ψ(τ) is selected as a sinusoidal function,  
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where β is the unknown phase difference. Again from Liao and Tan [22], a deformation 
equation is derived to describe the solution, which enables the unknown amplitude and phase 
to be found. The n-th order equation is, 
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Also, the linear operator L is chosen as second order due to the order of the original problem, 
and given a property to constrain all solutions to the form of the chosen basis function, i.e., 
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Referring back to equation (A3), the nonlinear operator is, 
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The component of the n-th order deformation equation is then derived, nR
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Solving the n-th order deformation equation (A10) for n=0 leads to the two equations in A0 
and β, 
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Taking n=1 in equation (A10) for the first order deformation, 
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Continual deformations can be calculated iteratively. The 1st order solution of u(t) is calculated 
by solving equation (A20) for )(1  , solving equation (A18) for A0, and substituting these into 
equation (A2), 
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Mathematica software can be used to automate the iteration process, however as described in 
section 2.2.1.1, only the 1st order solution was deemed necessary. 
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Appendix C:  Vibro-impact dynamics  

C.1. Event-driven Mathematica numeric solve script  

The following Mathematica 7.0 script calculates and plots a singular vibro-impact simulation. 
 
C.1.1 Input (ImpactDemo.nb) 

(* Vibro Impact script *) 
(* Harvester setup *) 
M=0.0667;r=0.0254/2; (* ball-bearing parameters *) 
fRestoring[x_]:=k1 x+k3 x^3+k5 x^5/.{k1405,k327115,k5-1.379*10^9}; (* calculated 
magnetic restoring force *) 
fDamping[v_]= v /.{->0.1}; (* damping relation *) 
 
(* Hertzian contact parameters *) 
1= 0.3;E1= 200*10^9; (* steel *) 
2= 0.33 ;E2= 70*10^9; (* al *) 
e=0.7; (* steel on al impact *) 
Khz=4/(3Pi) Sqrt[r]/((1-1^2)/(Pi E1)+(1-2^2)/(Pi E2)); (* hertzian stiffness *) 
fImpact[x_,xin_,v_,vin_]:=Sign[xin]*Khz*(Abs[x-xin])^(3/2)*(1+3/4(v/vin)*(1-e^2))  (* 
hertzian contact model *) 
 
(* Algorithm parameters *) 
range=5; (* domain of solving - greater than time for next impact *) 
numSegments=10; (* number of impacts considered 'steady state' *) 
 
(* Impact algorithm - with plotting functionality *) 
OneImpactPlot[A_,_,_,_,x0_,v0_,t0_]:=Module[{sol,xstop,t1, x1, 
v1,t2,x2,v2,plot1,plot2,XInterp1,XInterp2}, 
   sol=Check[First[NDSolve[{M x''[t]+fDamping[x'[t]]+fRestoring[x[t]]M A Cos[ 
(t+t0)+],x[0] x0,x'[0] 
v0},x,{t,0,range},MaxSteps,AccuracyGoalCeiling[$MachinePrecision], 
Method{"EventLocator", "Event"Abs[x[t]]-}]],"Error"]; 
   If[sol"Error",Throw[{"Stiff",Null},"stateTag"];,Null;]; (* abort if error in NDSolve *) 
   t1 = Evaluate[x/.sol][[1]][[1]][[-1]]; (* determine time of impact event *) 
   XInterp1=x/.sol;plot1={XInterp1[t-t0],t0t t0+t1};(* create time series for plots *) 
   If[t1==range,Throw[{"No Impact",{plot1}},"stateTag"];,Null;]; (* throw if no impact event 
*) 
   {x1,v1}={x[t1],x'[t1]}/.sol; (* find final conditions *) 
   {t2,x2,v2,xstop} = WithinStopPlot[A,,,][{t0+t1,x1,v1}]; (* calculate impact *) 
   XInterp2=x/.xstop;plot2={XInterp2[t-(t0+t1)],(t0+t1)  t (t0+ t1)+t2};(* create time 
series for plots *) 
   Return[{t0+t1+t2,x2,v2,{plot1,plot2}}]; 
   ]; 
 
WithinStopPlot[A_,_,_,_][{t1_,x1_, v1_}] :=Module[{sol,t2,x2,v2}, 
   sol=Check[First[NDSolve[{M 
x''[t]+fDamping[x'[t]]+fRestoring[x[t]]+fImpact[x[t],x1,x'[t],v1]M A Cos[ 
(t+t1)+],x[0]x1,x'[0] 
v1},x,{t,0,range},MaxSteps,AccuracyGoalCeiling[$MachinePrecision], 
Method{"EventLocator", "Event"Abs[x[t]]-}]],"Aborted"]; 
   If[sol"Error",Throw[{"Stiff",Null},"stateTag"];,Null;]; (* abort if error in NDSolve *) 
   t2 = Evaluate[x/.sol][[1]][[1]][[-1]]; (* determine time of impact exit *) 
   If[t2==range,Throw[{"No Exit",sol},"stateTag"];,Null;]; (* throw if no impact exit *) 
   {x2,v2}={x[t2],x'[t2]}/.sol; (* find final conditions *) 
   Return[{t2,x2,v2,sol}]; 
   ]; 
 
CalculateImpactStatePlot[A_,_,_,x0_,v0_,_]:=Module[{iImpact=0,t=0,x=x0,v=v0,XInterp={0},x
motion,flags,ploterr,state=0,plots}, 
   If[((x0 >(+A Cos[]/^2))|| (x0<(-+A Cos[]/^2))),Return[{"Invalid 
Condition",Null,0}];,Null;];(* x0 test - initially inside stops? *) 
   
flags=Catch[While[iImpact++<numSegments,{t,x,v,xmotion}=OneImpactPlot[A,,,,x,v,t];AppendT
o[XInterp,xmotion];];,"stateTag"];(* stitch multiple impact segments *) 
   (* calculate returns dependant on flags raised *) 
   If[Length[flags]>1,{state,ploterr}=flags;,Null;]; (* grab flags if error *) 
   If[(state"Stiff"||state"No Exit"),XInterp=Null;,Null;]; (* stiff system in NDSolve? 
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error in exit return? *) 
   If[(state"No Impact"),AppendTo[XInterp,ploterr];t=t+range;,Null;]; (* not steady-state? 
append final time series to segments *) 
   If[(state"No Impact"&&iImpact>1&&iImpact<numSegments),state="Transient";,Null;];(* add 
state for transient impacting *) 
   If[(iImpact numSegments),state="Steady State";,Null;]; (* add state for steady state 
impacting *) 
   If[Length[XInterp]0,plots=Null;,plots=Piecewise[Flatten[XInterp[[2;;]],1]];]; (* 
compile plots *) 
   Return[{state,plots,t}]; 
   ]; 
 
 (* Variables for testing *) 
Atemp=0.5*9.81*Sqrt[2]; (* base acceleration *) 
temp=12*2*Pi; (* base frequency *) 
x0temp=0; (* initial x *) 
v0temp=0; (* initial v *) 
temp=0;(* initial phase *) 
temp=0.0055;(* gap size *) 
 
(* Calculate and plot time series *) 
{time,{state,timeSeries,tEnd}}=Timing[CalculateImpactStatePlot[Atemp,temp,temp,x0temp,v0te
mp,temp]]; 
Print["State: ",state, " - calc in ",time,"s"]; 
XInterp[t0_]:=Evaluate[timeSeries/.tt0] 
Plot[{XInterp[t],temp,-temp},{t,0,tEnd}] 

 
C.1.2 Output 

Example output is shown in Figure C1. 
 

State:  Steady State  - calc in  0.062 s 

0.2 0.4 0.6 0.8

-0.004

-0.002

0.002

0.004

 

Figure C1 Example output for event-driven vibro-impact simulation script, for provided 
test variables. Includes determined state, time for execution, and plot of relative ball-bearing 
displacement. 
 
C.2. Calculation parallelisation script 

The following Mathematica 7.0 script calculates vibro-impact states over multiple variables on 
multiple kernels. It assumes that the variables defined in Appendix C.1 are available. 
Provided is the initial condition selection algorithm – related to steady-state conditions at the 
operating mode, briefly described in section 2.2.2. 
 
C.2.1 Input (ParallelImpactScript.nb) 

(* Set up kernels *) 
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CloseKernels[];LaunchKernels[$ProcessorCount]; 
$ConfiguredKernels (* show number of kernels *) 
 {8 local kernels} 
 
(* Functions and definitions *) 
(* create equivalent Duffing spring *) 
=fDamping[v]/v; 
{k1,k3,k5}=CoefficientList[fRestoring[x],x][[2;;;;2]]; 
yMax=0.015;yStep=0.001;ClearAll[,]; 
{,}={,}/.FindFit[Table[{y,k1 y+k3 y^3+k5 y^5},{y,0,yMax,yStep}],{ y +  y^3},{,},y]; 
 
(* Possible initial conditions *) 
maxDispl[_,_,F_,_,_]:=Max[Select[A/.NSolve[{(((/M)-^2+3 (/M)/4 A^2)^2+(/M)^2 ^2) 
A^2-F^20},A],Im[#]0&]]; 
maxVel[_,_,F_,_,_]:= maxDispl[,,F,,]; 
initList[max_]:=Range[-max,max,2max/(nSamples-1)]; 
 
(* Bool - in possible region of initial conditions *) 
inEllipse[ini_,xmax_,vmax_,_]:=Module[{x=ini[[1]],v=ini[[2]]}, 
   If[((((x/Abs[xmax])^2+(v/Abs[vmax])^2)1)&&Abs[x] ),Return[1];,Return[0];]; 
   ]; 
 
(* Get elliptical initial condition list from square list *) 
filterEllipse[xList_,vList_,xmax_,vmax_,_]:=Module[{initList,boolEllipse}, 
   
initList=Flatten[Table[{xList[[i]],vList[[j]]},{i,1,Length[xList]},{j,1,Length[vList]}],1]; 
   
boolEllipse=MapThread[inEllipse,{initList,ConstantArray[xmax,Length[initList]],ConstantArray
[vmax,Length[initList]],ConstantArray[,Length[initList]]}]; 
   Select[initList*boolEllipse,#{0,0}&]//Return; 
   ]; 
 
(* Get initial conditions from given drive level *) 
initCondsAtDrive[A_,_,_]:=Module[{xmax,vmax,vinitSquare,xinitSquare}, 
   (* find max values from HBM *) 
   xmax=maxDispl[,,A,,]; 
   vmax=maxVel[,,A,,]; 
   (* create a square list of initial conditions *) 
   If[xmax<,xinitSquare=initList[xmax];,xinitSquare=initList[];]; 
   vinitSquare=initList[vmax]; 
   (* mask square list by -modified ellipse filter for possible initial conditions *) 
   filterEllipse[xinitSquare,vinitSquare,xmax,vmax,]//Return; 
   ]; 
 
(* Create list of initial conditions to calculate *) 
initConds[conds_]:=Module[{A=conds[[1]],=conds[[2]],=conds[[3]],=conds[[4]],xList,vList,i
nitList}, 
   initList=initCondsAtDrive[A,,]; 
   Table[{A,,,,initList[[i]][[1]],initList[[i]][[2]]},{i,1,Length[initList]}]//Return; 
   ]; 
 
 
(* Create variables for testing *) 
(* Sweep parameters *) 
AList={0.5}* Sqrt[2]*9.81; (* base acceleration *) 
List=Table[i*2*Pi,{i,10,20,0.1}]; (* frequency range *) 
List=Range[0,7Pi/4,Pi/4]; (* mass-base phase difference *) 
List={3,6,8,12,15}*10^-3;  (* gap sizes *) 
nSamples=10; (* n x n x/v initial condition grid *) 
 
 (* Create a variable list with harvester properties *) 
varList=Tuples[{AList,List,List,List}]; (* combinations of parameters in varList - for 
ParallelDo *) 
varList=Flatten[initConds/@varList,1];(* Obtain parameter list with phase properties for 
algorithm, by analysing possible conditions exist in ellipse governed by HBM *) 
solList=Range[1,Length[varList]]; (* solution numbers for external saving *) 
pad=StringLength[ToString[solList[[-1]]]]; (* padding for consistent file naming *) 
outputDirectory=NotebookDirectory[]<>"data\\Parallel\\"; 
 
(* Make constants, functions, parameters, varList, solList available to multiple kernels *) 
DistributeDefinitions[M,e,r,k1,k3,k5,,Khz,fDamping,fRestoring,fImpact, 
range,numSegments,OneImpactPlot,WithinStopPlot,CalculateImpactStatePlot,varList,solList,pad,
outputDirectory]; 
Print["Number of solutions: ", solList[[-1]]]; 
 Number of solutions:  266496 
 
(* Begin counter *) 
timer=AbsoluteTime[]; 
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(* Start parallel loops *) 
ParallelDo[ 
 (* Assign variables *) 
 {Atemp,temp,temp,temp,x0temp,v0temp}=varList[[iVar]]; 
  (* Code block - evaluate functions and obtain result for saving *) 
 {state,timeSeries,tEnd}=CalculateImpactStatePlot[Atemp,temp,temp,x0temp,v0temp,temp]; 
 (* Export to external text file *)  
 Export[outputDirectory<>ToString@NumberForm[solList[[iVar]],pad,NumberPadding{"0",""}] <>  
".dat", 
  ToString[Row[N[varList[[iVar]]],","]]<>","<>state<>"\n","Text"]; 
 ,{iVar,1,Length[varList]}] 
 
(* display final time *) 
Print["Calc time: ",N[AbsoluteTime[]-timer],"s"]; 
Print["Time per solution: ",N[AbsoluteTime[]-timer]/solList[[-1]],"s"]; 

 
C.2.2 Output 

Individual external text files contain the details of each solution as “{A,•,•,•,x0,v0,state}”, 
available for re-importing to Mathematica as a table element. A batch file in the export 
directory containing “type *.dat > compiled.csv” compiles all results into a single file. 
Executing “Import[“…\\compiled.csv”]” returns data in an array for interpretation as in Figure 
C2. 
 

 

Figure C2 Demonstration of output of parallel calculations of 22,500 vibro-impact system states. 
Shows a steady state impacting probability of 0.33 (within the ellipse) with parameters 
 = 11.7 mm, a = 500 milli-g,  = 14 Hz, and  = /2 for a prototype harvester (black = 
steady state impacting, grey = transient impacting, white = not impacting). Originally 
published in [24]. 
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C.2.3 Computation comparison 

Table C1 indicates that a speed increase of 5.3 is possible through parallelisation of the 
Mathematica script (as shown in Appendix C.2.1).  
 
Table C1 Comparison of sequential and parallel computation – demonstrating a 5.3 times increase in 

computation speed 

Calculation method Solutions Total time (s) Time per solution (s) 
Sequential 5000 307.5 0.0615 
Parallel 5000 58.3 0.0117 
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Appendix D:  Electromagnetic transduction  

D.1. Model data extraction in MATLAB (modelExporter_main.m) 

The following script extracts data from a COMSOL model loaded onto the MATLAB server, 
for use in Mathematica. 
 
str_modelname = 'H27'; % model name on COMSOL server 
model = ModelUtil.model(str_modelname); 
studyval='std6'; datasetval='dset2'; % values in COMSOL solve 
  
% Obtain set parameters from model 
c_hei = removeUnits(model.param.get('c_hei')); 
c_radout = removeUnits(model.param.get('c_radout')); 
b_hei = removeUnits(model.param.get('b_hei')); 
m_hei = removeUnits(model.param.get('m_hei')); 
bond_low = removeUnits(model.param.get('bond_low')); 
bond_high = removeUnits(model.param.get('bond_high')); 
c_h0 = b_hei+m_hei+bond_low; 
c_h1 = c_h0+c_hei; 
  
% parametric sweep details: 'Outersolnum' 
y_max = removeUnits(model.param.get('bb_ymax')); 
y_min = removeUnits(model.param.get('bb_ymin')); 
y_step = removeUnits(model.param.get('bb_ystep')); 
paramList=y_min:y_step:y_max; 
paramvals=1:length(paramList); 
c_radout_nom=y_max; % assume solved out to edge of coil 
  
% various algorithm parameters 
comsolInterpRes=2e-4;   % distance between interpolated points in coil region - reasonable 
w.r.t. mesh quality & wire diam 
rho_wire=1.68e-8;       % copper resistivity 
  
% define Bz evaulation region [x,x,y,y,z,z] 
coilRegion=[-c_radout_nom,c_radout_nom,-c_radout_nom,c_radout_nom,c_h0,c_h1]; 
  
% Export Fy dynamics to CSV 
exportForces(model,datasetval,paramList,['data\', str_modelname]); 
  
% Obtain flux density from Comsol model and export to CSV 
% Interpolates flux in entire coil region over all parametric solutions 
struct_FluxDensity=interpFluxDensity(model,datasetval,paramList,coilRegion,comsolInterpRes); 
exportFluxDensity(struct_FluxDensity,['data\', str_modelname]); 
 
%% Functions 
%% ---------------------------------------------- 
%% exportFluxDensity 
% exports Comsol Bz fields to a csv for varying parameters 
function exportFluxDensity(struct_FluxDensity,exportStr) 
    csvwrite([exportStr,'_flux_xi.csv'],struct_FluxDensity.xi); 
    csvwrite([exportStr,'_flux_yi.csv'],struct_FluxDensity.yi); 
    csvwrite([exportStr,'_flux_zi.csv'],struct_FluxDensity.zi); 
    csvwrite([exportStr,'_flux_param.csv'],struct_FluxDensity.param); 
    for i=1:size(struct_FluxDensity.Bz,1) 
        csvwrite([exportStr,'_flux_bz_',num2str(i),'.csv'],struct_FluxDensity.Bz{i,1}); 
    end     
end 
 
%% exportForces 
% exports Comsol Fx/Fy/Fz to a csv 
function [mat_Fx,mat_Fy,mat_Fz]=exportForces(model,datasetval,paramList,exportStr)     
    % extract BB_Fy for each parameter point 
    % parametric sweep: 'Outersolnum' 
    paramvals=1:length(paramList); 
    mat_Fx=zeros(length(paramvals),2); 
    mat_Fx(:,1)=paramList'; 
    mat_Fy=mat_Fx; 
    mat_Fz=mat_Fx;        
    h_wait=waitbar(0,'Waitbar'); tic; % waitbar 
    for i_param=paramvals     
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mat_Fx(i_param,2)=mphglobal(model,'mfnc.Forcex_bb','dataset',datasetval,'Outersolnum',i_para
m); 
        
mat_Fy(i_param,2)=mphglobal(model,'mfnc.Forcey_bb','dataset',datasetval,'Outersolnum',i_para
m); 
        
mat_Fz(i_param,2)=mphglobal(model,'mfnc.Forcez_bb','dataset',datasetval,'Outersolnum',i_para
m); 
        % Update waitbar 
        waitbar(i_param/length(paramvals), h_wait, ['Approximate time to completion: ', ... 
            int2str(ceil((length(paramvals)-i_param)/i_param*toc)), ' s']); 
    end        
    csvwrite([exportStr,'_fx.csv'],mat_Fx);    
    csvwrite([exportStr,'_fy.csv'],mat_Fy);    
    csvwrite([exportStr,'_fz.csv'],mat_Fz);  
    close(h_wait); 
end 
 
%% ---------------------------------------------- 
%% interpFluxDensity 
% uses mphinterp to evaulate mfnc.Bz at each point in coil region 
% returns cell of {Bz} at {x,y,z} 
function 
[struct_FluxDensity]=interpFluxDensity(model,datasetval,paramList,coilRegion,interpRes) 
    c_x0=coilRegion(1); 
    c_x1=coilRegion(2); 
    c_y0=coilRegion(3); 
    c_y1=coilRegion(4); 
    c_z0=coilRegion(5); 
    c_z1=coilRegion(6);     
    % matrix of x,y,z points 
    xArr=linspace(c_x0,c_x1,(c_x1-c_x0)/interpRes); 
    yArr=linspace(c_y0,c_y1,(c_y1-c_y0)/interpRes); 
    zArr=linspace(c_z0,c_z1,(c_z1-c_z0)/interpRes); 
    pointsX=length(xArr); 
    pointsY=length(yArr); 
    pointsZ=length(zArr);     
    % create 3D array of points 
    [xi,yi,zi]=meshgrid(xArr,yArr,zArr);     
    % condition into nDim x nPoints array for Comsol 
    mat_Points=zeros(3,pointsX*pointsY*pointsZ); 
    count=0; 
    for i=1:pointsX 
        for j=1:pointsY 
            for k=1:pointsZ 
                count=count+1; 
                mat_Points(1,count)=xArr(i); 
                mat_Points(2,count)=yArr(j); 
                mat_Points(3,count)=zArr(k); 
            end 
        end 
    end     
    % calculate flux density for each parameter point 
    % mphinterp returns ntime x nPoints array 
    % parametric sweep: 'Outersolnum' 
    paramvals=1:length(paramList); 
    cell_fluxDensity=cell(length(paramvals),1);     
    h_wait=waitbar(0,'Waitbar'); tic;        
    for i_param=paramvals            
cell_fluxDensity{i_param,1}=mphinterp(model,'mfnc.Bz','coord',mat_Points,'dataset',datasetva
l,'Outersolnum',i_param); 
        % Update waitbar 
        waitbar(i_param/length(paramvals), h_wait, ['Approximate time to completion: ', ... 
            int2str(ceil((length(paramvals)-i_param)/i_param*toc)), ' s']); 
    end           
    % condition from Comsol array into 3D array 
    for i_param=paramvals            
        fluxDensity1D=cell_fluxDensity{i_param,1}; 
        fluxDensity3D=zeros(pointsX,pointsY,pointsZ); 
        count=0; 
        for i=1:pointsX 
            for j=1:pointsY 
                for k=1:pointsZ 
                    count=count+1; 
                    fluxDensity3D(i,j,k)=fluxDensity1D(count); 
                end 
            end 
        end         
        cell_FluxDensity{i_param,1}=fluxDensity3D; 
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    end     
    % store in struct for return    
struct_FluxDensity=struct('xi',xi,'yi',yi,'zi',zi,'param',paramList,'Bz',{cell_FluxDensity})
; 
    close(h_wait);     
end 
 
%% ---------------------------------------------- 
%% removeUnits 
% Remove units from COMSOL strings 
function [val]=removeUnits(str) 
    temp=char(str); 
    for i=1:length(temp) 
        if(temp(i)=='[') break; 
        end 
    end     
    % Convert units 
    factor=1; 
    if(temp(i+1:i+2)=='mm') factor=1/1000; 
    end 
    if(temp(i+1:i+2)=='um') factor=1/1000000; 
    end        
    val=str2num(temp(1:i-1))*factor; 
end 

 
D.2. Numeric coil output Mathematica script  

The following Mathematica 7.0 script calculates output of a harvester numerically, from 
COMSOL data. The user can configure the coil arrangement, and determine output given any 
displacement function or response (including the 2DOF x-y plane arrangement). It requires 
the exported files created in MATLAB by the script in Appendix D.1. The example output is 
for a two coil arrangement. The script requires the use of an open-source package called 
“Obtuse Angle Interpolation” (online:  www.familydahl.se/mathematica). 
 
D.2.1 Input (InducedVoltage.nb) 

 (* Set up kernels *) 
CloseKernels[];LaunchKernels[$ProcessorCount]; 
$ConfiguredKernels (* show number of kernels *) 
 {8 local kernels} 
 (* Import param list of COMSOL solutions *) 
datadir=NotebookDirectory[]<> "\\data\\"; 
modelname="H27_"; 
str1=datadir<>modelname; 
paramList=Import[str1 <> "flux_param.csv"][[1]]; 
paramList=Select[Transpose[{Range[1,Length[paramList]],paramList}],Sign[#[[2]]]0&]; (* get 
only positive displacement solutions *) 
{paramFileIndexes,paramList}=Transpose[paramList]; 
 
(* Import x,y,z *) 
{xList,yList,zList}=Import[str1 <>#]&/@{ "flux_xi.csv", "flux_yi.csv", "flux_zi.csv"}; 
 
(* Import Bz *) 
resortBz[data_,yi_]:=Partition[data,yi]//Transpose; 
importBz[param_,xi_,yi_]:=MapThread[resortBz,{Import[str1 <> "flux_bz_" <> ToString[param] 
<> ".csv"],ConstantArray[yi,xi]}]; 
 
bzList=MapThread[importBz,{paramFileIndexes,ConstantArray[Length[xList],Length[paramList]],C
onstantArray[Length[yList],Length[paramList]]}]; 
 (* Sample plot *) 
ncontours=10; 
ListContourPlot3D[bzList[[-
1]],Contoursncontours,MeshNone,ContourStyleTable[Lighter[Red,i/ncontours],{i,1,ncontours
}],ImageSize300] 
  
 (* Obtain 3D interpolation functions for each Bz field *) 
(* sort data into {{x,y,z},Bz} *) 
coords=Tuples[DeleteDuplicates/@Flatten/@{xList,yList,zList}]; 
insertCoordinates[data_]:=({#[[1]],#[[2]]})&/@Transpose[{coords,Flatten[data]}] 
 
(* Place coordinates in data and interpolate *) 
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bzData=insertCoordinates/@bzList; 
bzFun=Interpolation/@bzData; 
 (* Rotating Bz solutions for an x-y ball-bearing position solution - take advantage of 
cylindrical magnet radial symmetry *) 
nPoints=50; 
maxRadius=Max[paramList]; 
(* Use rotation transform on a varying set of points *) 
getRadialPoints[r_]:=If[r0,{{0,0}},Tuples[{Table[i,{i,0,2Pi,2Pi/(r/maxRadius*nPoints)}],{r
}}]]; 
 
(* Get polar values *) 
xyPlanePolar=Flatten[getRadialPoints/@paramList,1]; 
Print["nPoints: ",Length[xyPlanePolar]]; 
ListPolarPlot[xyPlanePolar,ImageSize300] 
 
(* Get x-y values from polar coords *) 
getXYPoints[{_,r_}]:=First[{Re[#],Im[#]}&/@{r*Exp[ ]}] 
xyPlane=getXYPoints/@xyPlanePolar; 
 nPoints:  411 
  
 (* Rotational transform to get x/y grid of flux values *) 
rotTransform[_]:=RotationTransform[,{0,0,1},{0,0,0}] (* rotate z about {0,0,0} *) 
 
(* Given a polar point, obtain Bz field *) 
lookupBz[r_]:=Select[Transpose[{Range[1,Length[paramList]],paramList}],#[[2]]r&][[1]][[1]] 
transformFunction[fun_,_,x_,y_,z_]:=fun[u,v,w]/.Thread[{u,v,w}->rotTransform[][{x,y,z}]] 
obtainBz[{_,r_}]:=transformFunction[bzFun[[lookupBz[r]]],,x,y,z] 
 (* Set up some coil parameters *) 
chei=Max[zList]-Min[zList];(* Specified in COMSOL *) 
rho=1.68*10^-8;wireradcu=133*10^-6;wirerad=150*10^-6; 
cuarea=Pi wireradcu^2;  
 
(* functions for resistance calcs *) 
loopResistance[r_]:=rho/cuarea*2Pi r; 
calcCoilResistance[{offset_,rset_,hset_}]:=Module[{Rwires=loopResistance/@rset}, 
   Length[hset]*Sum[Rwires[[i]],{i,Length[Rwires]}]//Return; 
   ]; 
(* calc total turns *) 
calcCoilTurns[{offset_,rset_,hset_}]:=Length[hset]*Length[rset] 
 (* Best fit of unit circles in a circle - 1-9 circles *) 
circlelist={ 
   {{0.,0.}}, 
   {{1.,0.},{-1.,0.}}, 
   {{0.,1.1547},{-1.,-0.57735},{1.,-0.57735}}, 
   {{1.,1.},{-1.,1.},{-1.,-1.},{1.,-1.}}, 
   {{1.61803,0.52573},{0.,1.7013},{-1.61803,0.52573},{-1.,-1.37638},{1.,-1.37638}}, 
   {{2.,0.},{1.,1.73205},{-1.,1.73205},{-2.,0.},{-1.,-1.73205},{1.,-1.73205}}, 
   {{0.,0.},{2.,0.},{1.,1.73205},{-1.,1.73205},{-2.,0.},{-1.,-1.73205},{1.,-1.73205}}, 
   {{0.,0.},{1.80194,1.437},{0.,2.30476},{-1.80194,1.437},{-2.24698,-0.51286},{-1.,-
2.07652},{1.,-2.07652},{2.24698,-0.51286}},{{0.,0.},{2.41421,1.},{1.,2.41421},{-
1.,2.41421},{-2.41421,1.},{-2.41421,-1.},{-1.,-2.41421},{1.,-2.41421},{2.41421,-1.}} 
   }; 
 
(* Create some coils based on circle fits *) 
createSingleCoil[chei_,crout_,crin_,{x_,y_}]:=Module[{rset,hset}, 
   rset=Table[i,{i,crin+wirerad,crout-wirerad,wirerad*2}]; 
   hset=Table[i+Min[Flatten[zList]],{i,wirerad,chei-wirerad,wirerad*2}]; 
   Return[{{x,y},rset,hset}]; 
   ]; 
createCoils[NCoils_,chei_,crin_,maxradius_]:=Module[{centres=circlelist[[NCoils]],rCoils,rla
rge,params,coilCentres}, 
   rlarge=Norm[Last[SortBy[centres,Norm]]] +1; 
   rCoils=maxradius/rlarge; 
   coilCentres=#*rCoils&/@centres; 
   params=MapThread[ConstantArray,{{chei,rCoils,crin},ConstantArray[NCoils,3]}]; 
   MapThread[createSingleCoil,{params[[1]],params[[2]],params[[3]],coilCentres}] 
   ]; 
 (* create a coil and plot it *) 
maxRadius=Max[paramList]; 
testCoil=createCoils[2,chei,0.003,maxRadius]; 
coilResistances=calcCoilResistance/@testCoil; 
coilTurns=calcCoilTurns/@testCoil; 
Print["Resistances: ",coilResistances," Sum: ", Total[coilResistances]]; 
Print["Turns: ",coilTurns," Sum: ", Total[coilTurns]]; 
 
plotCoil[{offset_,rset_,hset_}]:=Show[Table[ContourPlot[(x-offset[[1]])^2+(y-
offset[[2]])^2==crad^2,{x,-maxRadius,maxRadius},{y,-
maxRadius,maxRadius},PlotRangeAll],{crad,rset}],PlotRangeAll] 
Show[plotCoil/@testCoil,ContourPlot[(x)^2+(y)^2==Max[paramList]^2,{x,-
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maxRadius,maxRadius},{y,-maxRadius,maxRadius},ContourStyle{Black,Thick}],PlotRangeAll] 
 Resistances:  {1.34626,1.34626}  Sum:  2.69252 
 Turns:  {135,135}  Sum:  270 
  
 (* Compute flux in a coil for a specified ball-bearing position *) 
getPointFluxCoil[{_,r_},{offset_,rset_,hset_}]:=Module[{polarBzFun=obtainBz[{,r}]}, 
  Print[{,r}]; 
  Sum[Quiet[NIntegrate[Boole[(x-offset[[1]])^2+(y-offset[[2]])^2 crad^2]*polarBzFun,{x,-
maxRadius,maxRadius},{y,-
maxRadius,maxRadius},{z,Min[hset],Max[hset]},AccuracyGoal7,MethodLocalAdaptive]],{crad,rs
et}]*Length[hset]/(Max[hset]-Min[hset]) 
  ] 
 
(* compute across XY polar points in parallel *) 
DistributeDefinitions[getPointFluxCoil,xyPlanePolar,testCoil,obtainBz,maxRadius,lookupBz,par
amList,bzFun,transformFunction,rotTransform]; 
getXYFluxCoil[{offset_,rset_,hset_}]:=Parallelize[MapThread[getPointFluxCoil,{xyPlanePolar,C
onstantArray[{offset,rset,hset},Length[xyPlanePolar]]}]]; 
 iCoil=1; 
Show[plotCoil[testCoil[[iCoil]]],ContourPlot[(x)^2+(y)^2==Max[paramList]^2,{x,-
maxRadius,maxRadius},{y,-maxRadius,maxRadius},ContourStyle{Black,Thick}],PlotRangeAll] 
  
 (* Single coil calc *) 
t=AbsoluteTime[]; 
result=getXYFluxCoil[testCoil[[iCoil]]]; 
Print[AbsoluteTime[]-t]; 
 (* Single coil calc - obtain results *) 
fluxSolved=result; 
 (* 
(* Multiple coil calc *) 
t=AbsoluteTime[]; 
result=getXYFluxCoil/@testCoil; 
Print[AbsoluteTime[]-t]; 
*) 
 (* 
(* Multiple coil calc - obtain results *) 
fluxSolved=Sum[result[[n]],{n,{1,3}}]; (* e.g. coils 1 and 3 in series *) 
*) 
 fluxPositionXYListPlot=Partition[Flatten[Transpose[{xyPlane,fluxSolved}]],3]; 
fluxPositionXY=({{#[[1]],#[[2]]},#[[3]]})&/@fluxPositionXYListPlot; 
(* Display flux for the given coil iCoil *) 
pmax=maxRadius; 
{Show[ListPointPlot3D[fluxPositionXYListPlot],ListPlot3D[fluxPositionXYListPlot],PlotRange
{{-pmax,pmax},{-pmax,pmax},Automatic}], 
  Show[plotCoil[testCoil[[iCoil]]],ContourPlot[(x)^2+(y)^2==Max[paramList]^2,{x,-
maxRadius,maxRadius},{y,-
maxRadius,maxRadius},ContourStyle{Black,Thick}],PlotRangeAll]}//GraphicsRow 
  
 Needs["Obtuse`"]; 
 (* Interpolation from Obtuse package *) 
obtuseInterp=Interpolation[fluxPositionXY,Method"ObtuseAngle"]; 
 (* Place obtuse interpolation on a grid and interpolate normally *) 
dx=0.001; 
xGrid=Range[-maxRadius,maxRadius,dx]; 
yGrid=Range[-maxRadius,maxRadius,dx]; 
getPoint[{x_,y_}]:={x,y,obtuseInterp[{x,y}]} 
 
xyPointsForInterp=Map[getPoint,Tuples[{xGrid,yGrid}]]; 
 xyInterpFun=Interpolation[xyPointsForInterp,InterpolationOrder3] 
{ListPlot3D[xyPointsForInterp],Plot3D[xyInterpFun[x,y],{x,-maxRadius,maxRadius},{y,-
maxRadius,maxRadius}]}//GraphicsRow 
 
 (* Error analysis *) 
errorXYInterp[{x_,y_}]:=(Select[fluxPositionXY,#[[1]]{x,y}&][[1]][[-1]]-
xyInterpFun[x,y])/Select[fluxPositionXY,#[[1]]{x,y}&][[1]][[-1]]//Abs 
error=errorXYInterp/@xyPlane; 
ListPlot[error*100,PlotRangeAll,PlotLabel"Mean percentage error: " 
<>ToString[Mean[error]*100]] 
  
 (* Gaussian filtering *) 
filterFunction[fun_,t0_,t1_,step_,wid_]:=Module[{t,x,tf,xf,w}, 
  {t,x}=Transpose[Table[{t,fun[ t]},{t,t0,t1,step}]]; 
  tf=t[[wid+1;;-wid-1]]; 
  w = Exp[-.01 N[Range[-wid,wid]^2]]; 
  w /= Total[w]; 
  xf=ListCorrelate[w,x]; 
  Quiet[Interpolation[Transpose[{tf,xf}]]]//Return; 
  ] 
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(* Function to calculate RMS loss in filtering stages *) 
rmsOfFunction[fun_,t0_,t1_,step_]:=RootMeanSquare[Table[fun[ t],{t,t0,t1,step}]]//Quiet; 
 
(* Get filtered voltage waveform *) 
getVoltage[flux_,t0_,t1_,step_,wid_]:=Module[{rms1,rms2,stage1Loss,stage2Loss,fluxFilt,emfFu
nction,emfFilt,tlist=Range[t0,t1,step]},Quiet[ 
   fluxFilt=filterFunction[flux,t0,t1,step,wid]; 
   rms1=rmsOfFunction[#,t0,t1,step]&/@{flux,fluxFilt};stage1Loss=Ratios[rms1][[1]]; 
   emfFunction=Interpolation[Transpose[{tlist,fluxFilt'[tlist]}]]; 
   emfFilt=filterFunction[emfFunction,t0,t1,step,wid]; 
   rms2=rmsOfFunction[#,t0,t1,step]&/@{emfFunction,emfFilt}; 
   stage2Loss=Ratios[rms2][[1]]; 
   
{{Plot[{fluxFunction[t],fluxFilt[t]},{t,t0,t1},PlotLabel"Flux",AxesOrigin{t0,0},PlotRange
All],Plot[{emfFunction[t],emfFilt[t]},{t,t0,t1},PlotLabel"Voltage",AxesOrigin{t0,0},Plot
RangeAll]},rms2[[2]],stage1Loss*stage2Loss} 
   ]] 
 
(* Clear variables for NDSolve *) 
ClearAttributes[M,Protected]; 
ClearAll[t]; 
 
 (* Harvester setup *) 
M=0.0667;r=0.0254/2; (* ball-bearing parameters *) 
forceFits={k1435,k343596,k5-1.552*10^9};{k1,k3,k5}= {k1,k3,k5}/.forceFits; (* Fy curve 
*) 
=0.1; (* damping factor *) 
range=5; (* NDSolve range *) 
wid=2; (* filter option *) 
 
(* excitation conditions *) 
x=13.5*2Pi; 
x=0; 
Ax=0.5*9.81*Sqrt[2]; 
{t0x,x0x,v0x}={0,0,0}; 
 
y=13.5*2Pi; 
y=Pi/2; 
Ay=0.5*9.81*Sqrt[2]; 
{t0y,x0y,v0y}={0,0,0}; 
 
(* numerical solution *) 
sol=First[NDSolve[ 
    {M x''[t]+  x'[t]+k1 x[t]+k3 (x[t])^3+k5 (x[t])^5M Ax Cos[x (t+t0x)+x],x[0] 
x0x,x'[0] v0x, 
     M y''[t]+  y'[t]+k1 y[t]+k3 (y[t])^3+k5 (y[t])^5M Ay Cos[y (t+t0y)+y],y[0] 
x0y,y'[0] v0y}, 
    {x,y},{t,0,range},MaxSteps,AccuracyGoalCeiling[$MachinePrecision] 
    ]]; 
{XInterp,YInterp}={x,y}/.sol; 
 
(* Obtain and plot flux and voltage as a function of time *) 
fluxFunction[t_]:=xyInterpFun[x,y]/.{xXInterp[t],yYInterp[t]} 
t0=0;t1=range; 
{{flux1,voltage1},rms1,rmsloss1}=getVoltage[fluxFunction,t0,t1,step,wid]; 
 
Manipulate[GraphicsRow[Flatten[{ParametricPlot[{XInterp[t],YInterp[t]},{t,a,b},AspectRatio
1],getVoltage[fluxFunction,a,b,step,wid][[1]][[2]]}],ImageSize700],{{a,0,"start"},0,range}
,{{b,range,"end"},0,range}] 
Print["RMS Power: ",(rms1/2)^2/calcCoilResistance[testCoil[[iCoil]]]]; 
RMS Power:  0.00040777 

 
D.2.2 Output 

The script outputs various plots, most importantly, the demonstration of the coil arrangement, 
and the displacement/flux/voltage/power output of the selected coil. A two-coil 
arrangement is shown in Figure D1, and examples of the ball-bearing position and coil output 
voltage is shown in Figure D2. 
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Figure D1 A two coil arrangement – with two equal sized wire-coils of 135 turns each plotted within 
the chosen 30 mm diameter geometry 

 
 

 

Figure D2 A ‘manipulate’ object in Mathematica, demonstrating the position of the ball-bearing in the 
x-y plane (left), and the voltage output (right) – over an adjustable time range 

 
 



 

 

 
Page classification:  UNCLASSIFIED 

 
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

 
 

DOCUMENT CONTROL DATA 1.  PRIVACY MARKING/CAVEAT (OF DOCUMENT) 
 

2.  TITLE 
 
Modelling of a Bi-axial Vibration Energy Harvester     

3.  SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L)  NEXT TO DOCUMENT 
CLASSIFICATION) 
 
 Document   (U) 
 Title   (U) 
 Abstract    (U) 
 

4.  AUTHOR(S) 
 
Luke A. Vandewater and Scott D. Moss 
 

5.  CORPORATE AUTHOR 
 
DSTO Defence Science and Technology Organisation 
506 Lorimer St 
Fishermans Bend Victoria 3207 Australia 
 

6a. DSTO NUMBER 
DSTO-TN-1174 
 

6b. AR NUMBER 
AR-015-598 

6c. TYPE OF REPORT 
Technical Note 

7.  DOCUMENT  DATE 
May 2013 

8.  FILE NUMBER 
2013/1009165/1 
 

9.  TASK NUMBER 
07/388 

10.  TASK SPONSOR 
CDS 

11. NO. OF PAGES 
39 

12. NO. OF REFERENCES 
28 

13. DSTO Repository of Publications. 
 
http://dspace.dsto.defence.gov.au/dspace/    
 

14. RELEASE AUTHORITY 
 
Chief,  Air Vehicles Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 
 

Approved for public release. 
 
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 
16. DELIBERATE ANNOUNCEMENT 
 
No Limitations 
 
17.  CITATION IN OTHER DOCUMENTS        Yes 
18. DSTO RESEARCH LIBRARY THESAURUS   
 
vibration energy harvesting, homotopy analysis method, smart structures, power engineering, communications engineering 
 
19. ABSTRACT 
This report fully details the techniques involved in the modelling of a nonlinear and bi-axial vibration energy harvesting device. The device 
utilises a wire-coil electromagnetic (EM) transducer within a nonlinear oscillator created with a permanent-magnet/ball-bearing 
arrangement. The mechanical oscillations of the ball-bearing in response to bi-axial vibrations in a host structure induce a voltage across the 
coil, and therefore energy to power an attached device - such as an in-situ structural health monitoring system on an aircraft platform. 
Modelling the mechanical dynamics and the transduction of the harvester is undertaken, by means of finite element analysis (FEA), the 
homotopy analysis method (HAM), a novel probability-of-existence approach to vibro-impact, and numeric EM calculations. The models 
produced demonstrate high accuracy in comparison to a laboratory prototype.  
 

Page classification:  UNCLASSIFIED 
  

 


	ABSTRACT
	Executive Summary
	Authors
	Contents
	1. Introduction 
	1.1 Vibration energy harvesting 
	1.2 Prototype harvester 

	2. Modelling 
	2.1 Three dimensional COMSOL modelling
	2.2 Mechanical dynamics
	2.3 Electromagnetic transduction

	3. Conclusion
	4. References
	Appendix A:  Three dimensional COMSOL models 
	A.1. Static model (magnetic fields, no currents)
	A.2. Transient model (magnetic fields, deformed geometry, global ODEs)

	Appendix B:  Harvester ball-bearing dynamics 
	B.1. Homotopy analysis method  

	Appendix C:  Vibro-impact dynamics 
	C.1. Event-driven Mathematica numeric solve script 
	C.2. Calculation parallelisation script

	Appendix D:  Electromagnetic transduction 
	D.1. Model data extraction in MATLAB (modelExporter_main.m)
	D.2. Numeric coil output Mathematica script 

	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA




